200=16t^2+96t+120

Simple and best practice solution for 200=16t^2+96t+120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 200=16t^2+96t+120 equation:



200=16t^2+96t+120
We move all terms to the left:
200-(16t^2+96t+120)=0
We get rid of parentheses
-16t^2-96t-120+200=0
We add all the numbers together, and all the variables
-16t^2-96t+80=0
a = -16; b = -96; c = +80;
Δ = b2-4ac
Δ = -962-4·(-16)·80
Δ = 14336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14336}=\sqrt{1024*14}=\sqrt{1024}*\sqrt{14}=32\sqrt{14}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-32\sqrt{14}}{2*-16}=\frac{96-32\sqrt{14}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+32\sqrt{14}}{2*-16}=\frac{96+32\sqrt{14}}{-32} $

See similar equations:

| 5+4(x+8)=37-8(5x+11) | | 283,345.00+1,485.00x=333,835.00 | | (13x+5)=(7x+29) | | Y=3.2x+4Y=3.1x+4 | | 333,835.00-1,485.00x=283,345.00 | | 4x+15+3x=3x-45 | | $333,835.00-1,485.00x=283,345.00 | | 25=5x-500 | | 36w-18=6(4w-19) | | 4z+5=7 | | 12+y/6=16 | | 1/3(9x-7=4x | | 6x-60=30 | | 3x-5=2x15 | | 7x+8=12-4 | | 6b=36+2b | | -7(6z-3)+8=71 | | 7x+6=-6+2x+22 | | -8b+56=−56 | | 8s−2s=18 | | 28=-6x-12+2xx= | | 22x-3=7+22x | | 2/3(x-4)=1/3(x2-6) | | 8h-7h=10 | | -24+8h=9(6h+3) | | 0.8z-0.25=0.75 | | 8h−7h=10 | | 3(b+3)-4=29 | | 56=7/5w | | 8=2x+4​​ | | 11n-2n=9 | | -10+6k-10=9k+10 |

Equations solver categories